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Abstract
We study a system of spinless electrons moving in a two-dimensional
noncommutative space subject to a perpendicular magnetic field �B and confined
by a harmonic potential type 1

2mw0r
2. We look for the orbital magnetism of the

electrons in different regimes of temperature T, magnetic field �B and
noncommutative parameter θ . We prove that the degeneracy of Landau levels
can be lifted by the θ -term appearing in the electron energy spectrum at weak
magnetic field. Using the Berezin–Lieb inequalities for thermodynamical
potential, it is shown that in the high-temperature limit, the system exibits
a magnetic θ -dependent behaviour, which is missing in the commutative case.
Moreover, a correction to susceptibility at low T is observed. Using the Fermi–
Dirac trace formulas, a generalization of the thermodynamical potential, the
average number of electrons and the magnetization is obtained. There is a
critical point where the thermodynamical potential becomes infinite in both of
the two methods above. So at this point we deal with the partition function by
adopting another approach. The standard results in the commutative case for
this model can be recovered by switching off the θ -parameter.

PACS numbers: 73.43.−f, 03.65.−W, 05.70−a, 11.10.LM

Dedicated to Professor Erdal Inönü on his 75 birthday

1. Introduction

It seems that the noncommutativity appeared in physics since Palev [1] investigated the
noncanonical quantization of two particles interacting via a harmonic potential à la Wigner
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(see also [2–5]). One of the outcomes of his approach is that the position of any one of the
particles cannot be localized in the space since the coordinates of particles do not commute

[r̂i , r̂j ] �= 0 i �= j.

In field theories, the noncommutativity is introduced by replacing the standard product by the
star product. For a manifold parametrized by the coordinates xi , the noncommutative relation
can be written as [6]

[xi, xj ] = iθ ij (1)

where θ ij = εij θ is the noncommutative parameter and is of dimension of (length)2,
ε12 = −ε21 = 1. Basically, we are forced in this case to replace fg(x) = f (x)g(x) by
the relation

f (x) ∗ g(x) = exp
[ i

2
θ ij ∂xi ∂yj

]
f (x)g(y)|x=y (2)

where f and g are two arbitrary functions, supposed to be infinitely differentiable. The last
equation defines the so-called Moyal bracket of functions

{f, g}MB = f ∗ g − g ∗ f (3)

which has been applied to solve some physical problems (for example, see [7]).
Recently, some applications of these mathematical tools were used to solve some physical

problems. For instance, in quantum Hall effect a relation between θ and the quantized Hall
conductivity has been established [8] and a study of the multi-skyrmions near the filling factor
ν = 1 has been done [9]. Furthermore, in hydrogen atom spectrum the energy levels have been
analysed in the framework of noncommutativity [10]. Subsequently, with Dayi [11], we have
considered the behaviour of electrons in an external uniform magnetic field �B, where the space
coordinates perpendicular to �B are taken as noncommuting. Calculating the susceptibility,
we have found that the usual Landau diamagnetism is modified. We have also computed the
susceptibility according to nonextensive statistics. We have found that these two methods
agree under certain conditions. Basically, this paper [11] offers some possibilities to give
a noncommutative description for any system showing an anomaly in the Boltzmann–Gibbs
theory related to statistical physics.

On the other hand, orbital magnetism, which is possible only in quantum mechanics,
has stimulated some work in this period (see [12] and references therein). With Gazeau
et al [13], we have studied the possible occurrence of orbital magnetism for two-dimensional
electrons confined by a harmonic potential in various regimes of temperature and magnetic
field. Standard coherent state families are used for calculating symbols of various involved
observables like the thermodynamical potential, magnetic moment or the spatial distribution
of the current. Their expressions are given in a closed form and the resulting Berezin–Lieb
inequalities provide a straightforward way to study magnetism in various limit regimes. In
particular, we have predicted a paramagnetic behaviour in the thermodynamical limit as well as
in the quasiclassical limit under a weak field. Finally, we have obtained an exact expression for
the magnetic moment which yields a full description of the phase diagram of the magnetization.

Our main goal in this paper is to study the orbital magnetism of the model used in
[13] in noncommutative space. Our idea is to consider a system of electrons moving
on a noncommutative space and subject to a perpendicular magnetic field and harmonic
confining potential. We show the differences of the commutative and noncommutative cases.
In particular, employing the Berezin–Lieb inequalities we find that there is no degeneracy
when the magnetic field is weak and point out a correction to susceptibility at low and high
temperature T. Furthermore, using the Fermi–Dirac trace formulas, a general expression
is derived for the thermodynamical potential, the average number of electrons and the



Orbital magnetism of a two-dimensional noncommutative confined system 10161

magnetization. A critical point is found, such that at eBθ
c

= −2, the thermodynamical
potential becomes infinite in both the methods mentioned above. However, by using another
approach, we obtain the thermodynamical potential, which is found to be equivalent to that of
2d electrons in a uniform magnetic field. As a consequence we find infinite susceptibility for
zero magnetic field.

The outline of the paper is as follows. In section 2, we give the noncommutative version
of a Hamiltonian describing 2d electrons in the presence of a perpendicular magnetic field
and confining potential. Using two different methods, we investigate the energy spectrum
and the corresponding eigenfunctions in section 3. We study the degeneracy of Landau levels
in section 4, where we also start with the realization of some algebras and investigate the
magnetic field limits. In section 5, we derive the thermodynamical potential and the related
physical quantities by using two methods: the first makes use of the Berezin–Lieb inequalities
and the second one employs the Fermi–Dirac trace formulas. At critical point, we use another
approach to obtain the thermodynamical potential and related quantities. The final section is
devoted to conclusions and perspectives.

2. Electron in noncommutative space

Let us consider a system of spinless electrons (m, e) living on the (x, y)-space in a magnetic
field �B. We recall that the eigenstates and eigenvalues were investigated for the first time by
Landau [14]. When a harmonic confining potential is introduced and the Coulomb interactions
are neglected, this system is described by the Fock–Darwin Hamiltonian [15–17]

H = 1

2m

(
�P +

e

c
�A
)2

+
1

2
mw2

0r
2 (4)

where �P is the canonical momentum and �A is the vector potential. We will study this
Hamiltonian by making use of the commutation relations

[xi, pj ] = ih̄δij [pi, pj ] = 0 (5)

as well as equation (1), and by choosing the symmetric gauge

�A =
(

−B

2
y,

B

2
x

)
. (6)

According to this recipe, the above Hamiltonian acts on an arbitrary function �(�r, t) as

H ∗ �(�r, t) = 1

2m

[(
px − eB

2c
y

)2

+

(
py +

eB

2c
x

)2

+ m2w2
0(x

2 + y2)

]
∗ �(�r, t)

≡ Hθ�(�r, t). (7)

Therefore, the noncommutative version of equation (4) can be written as follows:

Hθ = 1

2m

((
p̃x − eB

2c
y

)2

+

(
p̃y +

eB

2c
x

)2
)

+
1

2
mw2

0

((
1

2
θpx + y

)2

+

(
1

2
θpy − x

)2
)
.

(8)

Here p̃µ is a linear function of the noncommutative parameter, such that

p̃µ =
(

1 +
mωc

4
θ
)
pµ µ = x, y. (9)

This problem has been analysed without the confining potential and at noncommutative level
on the torus [18]. Note that when θ vanishes, the standard Hamiltonian can be recovered.
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To close this section, we mention that the Hamiltonian equation (4) has been considered
on the noncommutative space [19], where the relation

[px, py] = iB (10)

and the convention (e = 1, c = 1) are used, which is not the case for our analysis. However, we
can find identical results concerning the noncommutative Hamiltonian formalism if we make
a redefinition of the magnetic field, such that

BP = −BJ

(
1 +

θ

4
BJ

)
(11)

where BP is the magnetic field used by Polychronakos et al and BJ is the one appearing in our
formulas2.

3. Eigenstates and eigenvalues of Hθ

We adopt two methods to obtain the energy spectrum and the eigenstates of Hθ. The first one
utilizes Weyl–Heisenberg symmetries and the last one is related to the stationary Schrödinger
equation.

3.1. Algebraic method

It is possible to write the noncommutative Hamiltonian as the sum of two independent harmonic
oscillator Hamiltonians H̃ 0 plus the angular momentum operator on z-directionLz. Therefore,
we have

Hθ = H̃ 0 +
ω̃c

2
Lz (12)

where H̃ 0 and Lz are given by

H̃ 0 = 1

2m

(
p̂2
x +

1

8
mω2x2

)
+

1

2m

(
p̂2
y +

1

8
mω2y2

)
(13)

Lz = xpy − ypx.

Here ωc = eB/mc is the cyclotron frequency, ω =
√
ω2
c + 4ω2

0 and

p̂2
µ =

(
1 +

mωc

2
θ +

(mω

4
θ
)2

)
p2
µ ω̃c = ωc

(
1 +

(
ωc

4
− ω2

0

ωc

)
mθ

)
. (14)

We want to express Hθ in terms of creation and annihilation operators. For that, we introduce
the following operators in the complex plane (z, z̄):

ãd = 1

2

(
ξ̃ z̄ +

i

2h̄ξ̃
pz

)
ã
†
d = 1

2

(
ξ̃ z − i

2h̄ξ̃
pz̄

)
(15)

ãg = 1

2

(
ξ̃ z +

i

2h̄ξ̃
pz̄

)
ã†
g = 1

2

(
ξ̃ z̄ − i

2h̄ξ̃
pz

)
where ξ̃ is a θ -function, such that

ξ̃ = 4

√
(mω/2h̄)2

1 + mωc

2 θ + (mω4 θ)2
. (16)

2 I am grateful to Polychronakos for pointing out equation (11) on 31 May 2001.
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It is easy to show that

[ãd, ã
†
d ] = 1 = [ãg, ã

†
g] (17)

and other commutators vanish. Consequently, H̃ 0 and Lz take the new forms

H̃ 0 = h̄ω̃

2
(Ñd + Ñg + 1) Lz = h̄(Ñd − Ñg) (18)

where Ñd = ã
†
d ãd , Ñg = ã

†
gãg are the number operators and ω̃ is θ -dependent:

ω̃ = ω

√
1 +

mωc

2
θ +

(mω

4
θ
)2
. (19)

Actually, we have the following expression for the noncommutative Hamiltonian:

Hθ = h̄ω̃

2
(Ñd + Ñg + 1) +

h̄ω̃c

2
(Ñd − Ñg). (20)

The latter can be arranged as follows:

Hθ = h̄

2
(Ñd ω̃+ + Ñgω̃− + ω̃) (21)

and we have

ω̃± = ω

√
1 +

mωc

2
θ +

(mω

4
θ
)2

± ωc

(
1 +

(
ωc

4
− ω2

0

ωc

)
mθ

)
= ω̃ ± ω̃c. (22)

We derive immediately the energy spectrum from the relation

H̃ θ | ñd , ñg〉 = Eñdñg | ñd , ñg〉 (23)

which leads to

Eñdñg = h̄

2
(ñd ω̃+ + ñgω̃− + ω̃) (24)

where ñd and ñg are non-negative integers. The corresponding eigenstates are tensor products
of single Fock oscillator states:

| ñd, ñg〉 = 1√
ñd !ñg!

(ã
†
d)

ñd (ã†
g)

ñg | 0̃, 0̃〉 (25)

where | 0̃, 0̃〉 is the vacuum of Hθ . Note that if we use equation (11), we recover the results
obtained in [19] for the Hamiltonian equation (4) in noncommutative space.

3.2. Analytical method

To obtain the analytical solutions of the present problem, we introduce the polar coordinates
(x, y) = (r sin ϕ, r cosϕ), with 0 < r < ∞ and 0 � ϕ � π . In this case, the stationary
Schrödinger equation can be written as follows:(

− h̄2

2m

(
1 +

mωc

2
θ
)

+
(mω

4
θ
)2

)(
∂2
r +

1

r
∂r +

1

r2
∂2
ϕ

)
− i

h̄ω̃c

2
∂ϕ +

m

8
ω2r2

)
�θ(r, ϕ)

= Eθ�θ(r, ϕ). (26)

Note that Hθ and Lz commute. Therefore, following the fundamental principle of quantum
mechanics, these operators have a common basis of eigenvectors. Then, by choosing these
eigenfunctions as �θ(r, ϕ) = Rθ(r)eiαϕ , we can show that equation (26) yields(

∂2
r +

1

r
∂r − α2

r2

)
Rθ(r) − (

k̃2 − ζ̃2r
2
)
Rθ(r) = 0 (27)



10164 A Jellal

where

k̃2 =
Eθ − h̄ωc

2

(
1 +

(
ωc

4 − ω2
0

ωc

)
mθ

)
α

h̄2

2

(
1 + mωc

2 θ +
(
mω
4 θ

)2
) ζ̃ 2 = (mω/2h̄)2

1 + mωc

2 θ +
(
mω
4 θ

)2 . (28)

By straighforward computation we show that

Rθ(r) = r |α| exp

(
− ζ̃ r2

2

)
Lθ(r) (29)

is a solution of the above equation, where the Lθ(r) are the Laguerre polynomials obeying

∂2
r Lθ +

(
2|α| + 1

r
− 2αr

)
∂rLθ − (2ζ̃ (|α| + 1) − k̃2)Lθ = 0. (30)

Therefore, we can obtain the explicit eigenstates of Hθ as

�θ(r, ϕ) = �n,α,θ (r, ϕ) = (−1)n

√
ζ̃

π

√
n!

(n + |α|)! exp

(
− ζ̃ r2

2

) (√
ζ̃ r

)|α|
L
(|α|)
n,θ

(
ζ̃ r2

)
eiαϕ

(31)

where

L
(|α|)
n,θ

(
ζ̃ r2

) =
n∑

m=0

(−1)m
(
n + |α|
n − m

) (
ζ̃ r2

)m
m!

n = 0, 1, 2, . . .

is the principal quantum number and α = 0,±1,±2, . . . is the angular momentum quantum
number. The corresponding spectrum is given by

Enα,θ = h̄ω̃

2

(
n +

|α| + 1

2

)
+
h̄ω̃c

2
α. (32)

Since L
(|α|)
n,θ (0) = (n+α)(n+α−1)···(α+1)

n! , from equation (31) we observe immediately that
�n,α,θ (0) = 0 and also becomes zero when r goes to infinity. Returning now to the algebraic
method, we can see that n and α are connected to ñd and ñg by

ñd = n + 1
2 (|α| + α) and ñg = n + 1

2 (|α| − α).

Note that �n,α,θ (r, ϕ) = 〈r, ϕ | n, α〉 = 〈r, ϕ | ñd , ñg〉.

4. Degeneracy of Landau levels

As in the commutative case [13], we can give a realization of certain algebras, in particular
su(2) and su(1, 1), in terms of the creation and annihilation operators defined before. We can
also study some particular cases in which the magnetic field takes some limiting values.

4.1. Algebras su(2) and su(1, 1)

We start with the former one. The algebra generators can be built as

S̃+ = ã
†
d ãg S̃− = ã†

gãd S̃z = Ñd − Ñg

2
= Lz

2h̄
. (33)

It easy to show that these generators verify the following commutation relations:

[S̃+, S̃−] = 2S̃z [S̃z, S̃±] = ±S̃±. (34)
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Subsequently, we can also define the invariant Casimir operator in terms of su(2) generators,

C̃ = 1

2
(S̃+S̃− + S̃−S̃+) + S̃

2
z =

(
Ñd + Ñg

2

)(
Ñd + Ñg

2
+ 1

)
. (35)

We prove that Hθ is not invariant under this algebra. As in the commutative case, for a given
value γ = (ñd + ñg)/2, there exists a (2 γ + 1)-dimensional UIR of su(2) in which the operator
S̃z has its spectral values in the range −γ � ρ = (ñd − ñg)/2 � γ .

Following the same idea the other algebra can be realized as follows:

T̃ + = ã
†
d ã

†
g T̃ − = ãd ãg T̃ 0 = 1

2
(Ñd + Ñg + 1) = H̃ 0

h̄ω̃
. (36)

Then we reproduce the commutation relations generating the su(1, 1) algebra:

[T̃ +, T̃ −] = −2T̃ 0 [T̃ 0, T̃ ±] = ±T̃ ±. (37)

Furthermore, its Casimir operator is given by

D̃ = 1

2
(T̃+T̃− + T̃−T̃+) − T̃ 2

0 = −
(
Ñd − Ñg

2
+

1

2

)(
Ñd − Ñg

2
− 1

2

)
= −1

4

(
Lz

h̄

2

− 1

)
.

(38)

This algebra also is not a symmetry of the noncommutative Hamiltonian. Note that, when
ñd � ñg , for a given value η = (ñd − ñd + 1)/2 � 1/2, there exists a UIR of su(1, 1)
in the discrete series, in which the operator T̃0 has its spectral values in the infinite range
η, η + 1, η + 2, . . . . However, when ñd � ñg , for a given value ϑ = (−ñd + ñg + 1)/2 � 1/2,
there also exists a UIR of su(1, 1) in which the spectral value of the operator T̃0 runs in the
infinite range ϑ, ϑ + 1, ϑ + 2, . . . .

4.2. Magnetic field limits

Let us examine some particalur cases of the magnetic field: weak-field and strong-field limits.
We begin by arranging the energy spectrum as follows:

Ẽnα = h̄ω̃

2
γ +

h̄ω̃c

2
ρ +

h̄ω̃

2
. (39)

Weak field case. Suppose that ωc � ω0, then the above equation can be approximated by

Ẽnα ≈ h̄ω0

√
1 +

(mω0

2
θ
)2

(2γ + 1) − h̄mω2
0

2
θρ ≡ Eγ,ρ (40)

which tells us that there is no degeneracy of Landau levels. This effect is due to the presence
of the θ -term in the energy spectrum equation (40). The latter shows a difference with the
commutative case, where we have pointed out [13] that su(2) is behind the degeneracy of
Landau levels at weak field.
Strong field case. In the limit of strong magnetic field ωc � ω0, we have

Eñdñg ≈ h̄ωc

(
1 +

mωc

4
θ
)(

ñd +
1

2

)
. (41)

As in the commutative case by redefining ωc we get harmonic oscillator and it is still true that
for a given value of ñd , we have an infinite degeneracy labelled by ñg or by α = ñd − ñg � ñd .
The quantum number ñd corresponds to the Landau level index (as well as n for negative
α). One can reinterpret it in terms of su(1, 1) symmetry by noting that, for a given value of
α � 0, the energy eigenstates are ladder states for the discrete series representation labelled
by ϑ = −α/2 + 1/2.
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Generic intermediate case. We distinguish two cases: for ω̃+/ω̃− /∈ Q, what we can do is just
write the energy spectrum in the form

Eñd ñg ≡ Eñd ñg

h̄ω̃−
− ω̃

2ω̃−
= ω̃+

ω̃−
ñd + ñg (42)

otherwise there is no information about degeneracy. For ω̃+/ω̃− = p/q ∈ Q, the latter is
possible:

Eñdñg = Eñ′
d ñ

′
g

iff
p

q
= − ñg − ñ′

g

ñd − ñ′
d

. (43)

Conclusion. The above analysis leads us to conclude that the introduction of the
noncommutative parameter can solve some problems. For instance, the degeneracy of the
Landau levels is lifted via the θ -term for a weak magnetic field. Indeed, for any non-zero

θ -value, the term h̄mω2
0

2 θρ is present in equation (40), which means that for any given eigenvalue
Eλ,ρ there is only one eigenfunction parametrized by the same integers λ and ρ. However for
θ = 0, we recover the harmonic oscillator for two-dimensional Landau problem, which is a
degenerate system.

5. Thermodynamical potential

We make the assumption that the total number 〈Ñe〉 of electrons is large enough so that the
difference between a grand canonical ensemble and a canonical one is not of importance
[12, 13]. Then, the thermodynamical potential can be written as follows:

9θ = − 1

β
Tr log

(
1 + e−β(Hθ−µ)

)
(44)

with β = 1/(kBT ). Evaluating the trace on the derived eigenstates, we obtain

9θ =
∞∑

ñd ,ñg

log
(

1 + e−β( h̄2 (ω̃+ñd+ω̃−ñg+ω̃)−µ)
)
. (45)

By definition, the magnetic moment Mθ is

Mθ = −
(
∂9θ

∂B

)
µ

(46)

and the average number of electrons is given by

〈Ñ e〉 = −∂µ9θ . (47)

On the other hand, it is not easy to manipulate directly equation (45) and subsequently
equations (46) and (47). Basically, we need some tools to do that; this is the reason why we
introduce coherent states [20, 21]. Then, before investigating the thermodynamical potential,
we start with constructing the coherent states. Note that this construction is, more or less, the
same as in the standard case.

5.1. Coherent states

Using standard methods, the coherent states for the present system can be constructed as
follows:

| z̃d , z̃g〉 = exp
[− 1

2 (|z̃d |2 + |z̃g|2)
]

ez̃d ã
†
d+z̃g ã

†
g | 0̃, 0̃〉. (48)
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It easy to observe that

ãd | z̃d , z̃g〉 = z̃d | z̃d , z̃g〉 ãg | z̃d , z̃g〉 = z̃g | z̃d , z̃g〉. (49)

We cite some interesting properties, which will be useful in the next. The first one is the action
identity

Ȟθ (z̃d, z̃g) ≡ 〈z̃d , z̃g | Hθ | z̃d , z̃g〉 = h̄

2

(
ω̃+|z̃d |2 + ω̃−|z̃g|2 + ω̃

)
. (50)

In the literature, the function Ȟθ (z̃d, z̃g) is known as the lower (resp. contravariant) symbol
of the operator Hθ [23, 26]. It will play an important role in the present context. The second
one is the resolution of the unity:

I = 1

π2

∫
C2

| z̃d , z̃g〉〈z̃d , z̃g | d2z̃d d2z̃g. (51)

The last property is also crucial in our context. Indeed, for any observable A with suitable
operator properties (trace-class, etc), there exists a unique upper (or covariant) symbol
Â(z̃d , z̃g) defined by

A = 1

π2

∫
C2

Â(z̃d , z̃g) | z̃d , z̃g〉〈z̃d , z̃g | d2z̃d d2z̃g. (52)

It is easy to see that the upper symbols for number operators are

ˆ̃Nd(z̃d , z̃g) = |z̃d |2 − 1 ˆ̃Ng(z̃d , z̃g) = |z̃d |2 − 1 (53)

which imply the following one for the noncommutative Hamiltonian

Ĥθ (z̃d, z̃g) = h̄

2

(
ω̃+|z̃d |2 + ω̃−|z̃g|2 − ω̃

)
. (54)

Note that there is another useful trace identity for a trace-class observable A, such that

TrA = 1

π2

∫
C2

Ǎ(z̃d, z̃g) d2z̃d d2z̃g = 1

π2

∫
C2

Â(z̃d , z̃g) d2z̃d d2z̃g (55)

where we have Ǎ(z̃d , z̃g) ≡ 〈z̃d , z̃g | A | z̃d , z̃g〉.

5.2. Berezin–Lieb inequalities

Let us observe that log (1 + e−β(Hθ−µ)) is a convex function of the positive Hamiltonian Hθ.
Then, the Berezin–Lieb inequalities can be applied to study the quasi-classical behaviour of
the thermodynamical potential. For any convex functiong(A) of the observableA it is possible
to write [23, 26]

1

π2

∫
C2
g(Ǎ) d2z̃d d2z̃g � Trg(A) � 1

π2

∫
C2
g(Â) d2z̃d d2z̃g. (56)

This formula can be used for evaluating the (concave) thermodynamical potential. Then, we
have

− 1

βπ2

∫
C2

log
(

1 + e−β(Ĥ θ−µ)
)

d2z̃d d2z̃g � 9θ � − 1

βπ2

∫
C2

log
(

1 + e−β(Ȟ θ−µ)
)

d2z̃d d2z̃g.

(57)

Using equations (50) and (54) and performing the angular integrations, we get

− 1

β

∫ ∞

0
dũd

∫ ∞

0
dũg log

(
1 + e−β( h̄2 (ω̃+ũd+ω̃−ũg−ω̃)−µ)

)
� 9θ

(58)

9θ � − 1

β

∫ ∞

0
dũd

∫ ∞

0
dũg log

(
1 + e−β( h̄2 (ω̃+ũd+ω̃−ũg+ω̃)−µ)

)



10168 A Jellal

where ũd=|z̃d |2 and ũg=|z̃g|2. In order to calculate the last integrals, we put ũ =
βh̄

2 (ω̃+ũd + ω̃−ũg), ṽ = βh̄

2 ω̃+ũd , then performing an integration by parts, and introducing
the control parameters κ̃± = exp (β(µ ± h̄ω̃/2)), we obtain

φ(κ̃+) � 9θ � φ(κ̃−) (59)

where φ(κ̃) takes the form

φ(κ̃) = − 2κ̃

β(βh̄)2ω̃+ω̃−

∫ ∞

0

ũ2e−ũ

1 + κ̃e−ũ
dũ

=
{ 4

β(βh̄)2ω̃+ω̃−
F̃ 3(−κ̃) for κ̃ � 1

4
β(βh̄)2ω̃+ω̃−

[
− (log κ̃)3

6 − π2 log κ̃
6 + F̃ 3(−κ̃−1)

]
for κ̃ > 1

(60)

and the function F̃s is Riemann–Fermi–Dirac type, such that

F̃s(z̃) =
∞∑
n=1

z̃n

ns
. (61)

Since we have a term ω̃+ω̃− in the denominator of equation (60), we note that

ω̃+ω̃− = ω2
0(2 + mωcθ)

2. (62)

We observe that equation (60) shows a singularity at a critical point. So we are now forced to
distinguish two different cases. The first one, mωcθ �= −2, is equivalent actually to eBθ

c
�= 2.

Then we have mωcθ > or < −2, since there is a square, we can only discuss the global
case. Second one is a critical point mωcθ = −2 where equation (60) diverges. Remembering
that by using equation (11), we find that our cases coincide with those noted in [19], namely
Bθ �= 1 and Bθ = 1. In this section, we assume that the former case holds in further analysis.
However, the latter case will deal with the last section.

Let us examine equation (60) in different limits of temperature and by putting the
condition: mωcθ �= −2. In other words, we want to derive the thermodynamical potential
and the related physical quantities at high and low temperatures at noncommutative level and
compare with the standard case.
High-temperature limit. In this case we make the assumption |µ±h̄ω̃/2| � β and get κ̃± ≈ 1.
Therefore using equations (59) and (60), 9θ can be approximated by

9θ ≈ 4

β3h̄2

F3(−1)

ω̃+ω̃−
(63)

where F3(−1) = −0.901 543. In terms of θ we have

9θ ≈ −0.901 543 × 4

(
1

βh̄ω0

)2

β(2 + mωcθ)2
. (64)

We remark from the last formula that ∂µ9θ = 0, namely there is no exchange of electrons.
This means that at high temperature, the present system can be described as a canonical
ensemble. However, the magnetization and susceptibility can be evaluated in this case. We
get for Mθ

Mθ = 0.901 543 × 8

(
1

βh̄ω0

)2
eθ/βc

(2 + mωcθ)3
(65)

and remembering the relation χθ = ∂Mθ

∂B
, we obtain for the susceptibility

χθ = −0.901 543 × 24
1

β3

( eθ

h̄cω0

)2 1

(2 + mωcθ)4
. (66)
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Let us examine some particular cases of the last equation. For a zero magnetic field, we find

χθ = −0.901 543 × 3

2

1

β3

(
eθ

h̄cω0

)2

. (67)

This latter shows that χθ is θ -dependent. Therefore, we have Landau diamagnetism since θ is
a real value. However, when θ vanishes there is no magnetic behaviour. This means that

χθ=0 = 0 (68)

which is compatible with the standard case. It is interesting to note that at high temperature
the system presents a magnetic behaviour in terms of θ and it is the canonical one. This effect
does not appear in the commutative case. This is one of the original results derived in this
paper.
Low-temperature limit. Let us consider another interesting case, namely µ � h̄ω̃/2 and
µ � β. In this situation, φ(κ̃) can be expressed as

φ(κ̃±) = Ã ∓ D̃

2
+ S̃± (69)

and we have

Ã = −2µ

1
3

(
µ

h̄ω0

)2
+ 1

4

(
ω̃
ω0

)2
+ π2

3

(
1

βh̄ω0

)2

(2 + mωcθ)2

D̃

2
= 2h̄ω̃

1
2

(
µ

h̄ω0

)2
+ 1

24

(
ω̃
ω0

)2
+ π2

6

(
1

βh̄ω0

)2

(2 + mωcθ)2
(70)

S̃± =
(

1

βh̄ω0

)2 4

β(2 + mωcθ)2
F3(− exp [−β(µ± h̄ω̃/2)]).

At low temperature, S̃± can be approximated by the following relation:

S̃0 =
(

1

βh̄ω0

)2

F3(−e−βµ)
4

β(2 + mωcθ)2
(71)

and we can see immediately that the equation

D̃

|Ã + S̃0|
= h̄ω̃

µ


 3 + π2

(
1
βµ

)2
+ 1

4

(
h̄ω̃
µ

)2

1 + π2
(

1
βµ

)2
+ 3

4

(
h̄ω̃
µ

)2
−

(
1
βµ

)3
F3(−e−βµ)


 (72)

tends to zero. Therefore, the thermodynamical potential can be written as follows:

9θ = − 2µ

(2 + mωcθ)2

[
1

3

(
µ

h̄ω0

)2

+
1

4

(
ω̃

ω0

)2

+
π2

3

(
1

βh̄ω0

)2

− 2

βµ

(
1

βh̄ω0

)2

F3(−e−βµ)

]
. (73)

In this quasiclassical regime, the average number of electrons is

〈Ñ e 〉 = 4

(
µ/h̄ω0

2 + mωcθ

)2
[

1

2
+

1

8

(
h̄ω̃

µ

)2

+
π2

6

(
1

βµ

)2

(74)

+
(ω0

ω̃

)2
(2 + mωcθ)

2

(
1

βµ

)2

F2(−e−µβ)

]



10170 A Jellal

which can be estimated as

〈Ñ e 〉 ≈ 2

(
µ

h̄ω0

)2 1

(2 + mωcθ)2
. (75)

Note that the average number of electrons at low T in the commutative case can be recovered
just by switching off one of the parameters B or θ . By using the definition of magnetic moment,
we obtain

Mθ = −4
eµθ/c

(2 + mωcθ)3

[
1

3

(
µ

h̄ω0

)2

+
1

4

(
ω̃

ω0

)2

+
π2

3

(
1

βh̄ω0

)2

− 2

βµ

(
1

βh̄ω0

)2

×F3(−e−βµ)

]
+

eµ/mc

(2 + mωcθ)2

[
ωc

ω2
0

+
mθ

4ω2
0

(
2ω2

c + ω2
)

+ 2
ωc

ω2
0

(
mωθ

4

)2
]
.

(76)

Therefore, the susceptibility takes the following form:

χθ = 12µ
(eθ/c)2

(2 + mωcθ)4

[
1

3

(
µ

h̄ω0

)2

+
1

4

(
ω̃

ω0

)2

+
π2

3

(
1

βh̄ω0

)2

− 2

βµ

(
1

βh̄ω0

)2

F3(−e−βµ)

]

− 4µ
( e

mc

)2 mθ

(2 + mωcθ)3

[
ωc

ω2
0

+
mθ

4ω2
0

(
2ω2

c + ω2
)

+ 2
ωc

ω2
0

(
mωθ

4

)2
]

+

(
e

mcω0

)2
µ

(2 + mωcθ)2

[
1 + 2mωcθ + 6

(
mωθ

4

)2
]
. (77)

For zero magnetic field, we find

χθ = χp

[
1 + (mω0θ)

2

{
1 +

(
µ

h̄ω0

)2

+ 3

(
mω0θ

2

)2

+

(
π

βh̄ω0

)2

− 6

βµ

(
1

βh̄ω0

)2

F3(−e−βµ)

}]
(78)

which implies that a correction is obtained in this case. Let us solve the above equation in
order to obtain the limiting cases for χθ. So, equation (78) can be written in compact form

χθ = χp

[
1 + aλ + 3

4λ
2] (79)

where λ = (mω0θ)
2 and a = 1 +

(
µ

h̄ω0

)2
+ 3

(
mω0θ

2

)2
+
(

π
βh̄ω0

)2
− 1

βµ

(
1

βh̄ω0

)2
F3(−e−βµ).

The possible solutions of equation (79) are

λ± = 2
3 (−a ±

√
a2 − 3) (80)

we can see that at λ± values, the susceptibility vanishes. However for λ ∈]λ−, λ+[, there is a
diamagnetic behaviour, but otherwise the system exibits a paramagnetic behaviour. Now by
switching off the noncommutative parameter, we get

χθ ≡ χp = µ

(
e

2mcω0

)2

(81)

this shows that in the commutative case, the system exibits an orbital paramagnetism in the
limiting case for magnetic field [13].
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5.3. Fermi–Dirac trace formulas

It is well known that, like the Gaussian function, the function sechx = 1/ cosh x is a fixed
point of the Fourier transform in the Schwartz space:

1

cosh
√

π
2 x

= 1√
2π

∫ +∞

−∞

e−ixy

cosh
√

π
2 y

dy. (82)

Then for a given Hamiltonian H, the Fermi operator is

f (H) ≡ 1

1 + eβ(H−µ)
=

∫ +∞

−∞

e−(ik+1) β2 (H−µ)

4 cosh π
2 k

dk (83)

and the corresponding thermodynamical potential operator takes the form

− 1

β
log

(
1 + e−β(H−µ)

) = − 1

β

∫ +∞

−∞

e−(ik+1) β2 (H−µ)(
2 cosh π

2 k
)
(ik + 1)

dk. (84)

Therefore, the average number of fermions and the thermodynamical potential can be written as

〈N〉 = Trf (H) =
∫ +∞

−∞

e(ik+1) βµ2

4 cosh π
2 k

E(k) dk (85)

9 = Tr

(
− 1

β
log

(
1 + e−β(H−µ)

)) = − 1

β

∫ +∞

−∞

e(ik+1) βµ2(
2 cosh π

2 k
)
(ik + 1)

E(k) dk (86)

where E designates the function

E(k) = Tr
(

e−(ik+1) β2 H
)
. (87)

Observe that (2n + 1)i, n ∈ Z, are (simple) poles for the function 1/ cosh π
2 k and i is a

pole for the functions E(k) and 1/(ik + 1). These Fourier integrals can be evaluated by
using residue theorems if the integrand functions F1(k) = E(k)/ cosh π

2 k and F2(k) =
E(k)/((ik +1) cosh π

2 k) satisfy the Jordan Lemma, that is, F1(reiϕ) � g(r), F2(reiϕ) � h(r),
for all ϕ ∈ [0, π], and g(r) and h(r) vanish as r → ∞. The quantities 〈 N 〉 and 9 are then
formally given by

2π i

[
a−1(i) +

∞∑
n=1

a−1((2n + 1)i) +
∑
ν

a−1(kν)

]
(88)

where a−1(·) denotes the residue of the involved integrand at pole (·), and the kν’s are the poles
(with the exclusion of the pole i) of E(k) in the complex k-plane.

We now apply the above tools to get the thermodynamical potential through Fermi–Dirac
trace formulas. To do that, we begin by evaluating equation (87) at noncommutative level.
Then, in our case we can write E(k) as follows:

Ẽ(k) = e−(ik+1) β4 h̄ω̃
1

1 − e−(ik+1) β2 h̄ω̃+

1

1 − e−(ik+1) β2 h̄ω̃−
. (89)

Subsequently, the Fourier integral representation for the thermodynamical potential equation
(86) becomes

9θ = − 1

β

∫ +∞

−∞

e−(ik+1) β2 (
h̄ω̃
2 −µ)

2 cosh π
2 k

(
1

ik + 1

)(
1

1 − e−(ik+1) β2 h̄ω̃+

)(
1

1 − e−(ik+1) β2 h̄ω̃−

)
dk. (90)

As indicated in the formula (87), this Fourier integral is given as a series by using the residue
theorem. One can easily see that the numbers (2n + 1)i, n ∈ Z, are simple poles of sech π

2 k,
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i is a double pole of E (k), and i + 4πn/(βh̄ω̃+), i + 4πn/(βh̄ω̃−), n ∈ Z∗, are simple or
double poles of E(k) according to whether ω̃+ and ω̃− are uncommensurable or not. In order
to fulfill the requirements of the Jordan Lemma, one has to consider the following two cases:
µ � h̄ω̃/2 and µ � h̄ω̃/2. In the first case we take an integration path lying in the lower
half-plane and involving only the simple poles (2n + 1)i, n < 0. We get

9θ = 1

4β

∞∑
n=1

(−1)n

n

eβµn

sinh
(
β

2 h̄ω̃+n
)

sinh
(
β

2 h̄ω̃−n
) . (91)

In the second case, an integration path in the upper half-plane is chosen. It encircles all the
other poles: (2n + 1)i, n � 0, i + 4πn/(βh̄ω̃+), i + 4πn/(βh̄ω̃−), n ∈ Z∗. We present the
result in a manner which will render apparent the various regimes:

9θ = (9̃L + 9̃01) + 9̃02 + 9̃osc

= 2π i


︷ ︸︸ ︷
a−1(i)+

︷ ︸︸ ︷∑
n�1

a−1((2n + 1)i)+

︷ ︸︸ ︷∑
n±�=0

(a−1(i +
4π

βh̄ω̃±
n±)


 . (92)

Here we suppose that mωcθ �= −2 is satisfied and as mentioned before the opposite case will
be considered in the last section. For 9̃L, we find

9̃L = µ

6ω2
0

(
ωc +

(
mω2

cθ/4
) − mω2

0θ

2 + mωcθ

)2

(93)

and 9̃01 can be written as follows:

9̃01 = − 2µ

(2 + mωcθ)2

[(
µ

h̄ω0

)2

+

(
π

βh̄ω0

)2
]

+
µ

12
. (94)

9̃02 is given by

9̃02 = 1

4β

∞∑
n=1

(−1)n

n

exp (−βµn)

sinh
(
βh̄ω̃+

2 n
)

sinh
(
βh̄ω̃−

2 n
) . (95)

For ω̃+/ω̃− �∈ Q, we obtain

9̃osc = 1

2β

∞∑
n=1

(−1)n

n


 sin

(
2µ
h̄ω̃−

πn
)

sin
(
ω̃+
ω−
πn

)
sinh

(
2π2n
βh̄ω̃−

) +
sin

(
2µ
h̄ω̃+

πn
)

sin
(
ω̃−
ω̃+
πn

)
sinh

(
2π2n
h̄ω̃+

)



≡ 9̃−
osc + 9̃+

osc. (96)

However, for ω̃+/ω̃− = p/q ∈ Q, gcd (p, q) = 1, ω̃+/p = ω̃−/q = 2l/(h̄β) ∈ R, we have

9̃osc = 1

2β


 ∞∑
n=1,n �≡0 mod q

(−1)n

n

sin
(

2µ
h̄ω̃−

πn
)

sin
(
ω̃+
ω−
πn

)
sinh

(
2π2n
βh̄ω̃−

)

+
∞∑

n=1,m�≡0 modp

(−1)n

n

sin
(

2µ
h̄ω̃+

πn
)

sin
(
ω̃−
ω̃+
πn

)
sinh

(
2π2n
h̄ω̃+

π2n
)

+
1

lpq

∞∑
k=1

(−1)(p+q)k

k sinh ( π
2

l
k)

[
βµ cos

(
βµπk

l

)

−
(
π coth

(
π2

l
k

)
+

l

πk

)
sin

(
βµπk

l

)]
 . (97)
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Therefore, the average number of electrons is

〈Ñe 〉 = − 1

6ω2
0

(
ωc +

(
mω2

cθ/4
) − mω2

0θ

2 + mωcθ

)2

+
1

2

[
4

(2 + mωcθ)2

((
µ

h̄ω0

)2

+
1

3

(
π

h̄ω0

)2
)

− 1

6

]

+
1

4

∞∑
n=1

(−1)n
e−βµn

sinh
(
β

2 h̄ω̃+n
)

sinh
(
β

2 h̄ω̃−n
) − π

∞∑
n=1

(−1)n

×

 1

βh̄ω̃−

cos
(

2µ
h̄ω̃−

πn
)

sin
(
ω̃+
ω̃−
πn

)
sinh

(
2π2n
βh̄ω̃−

) +
1

βh̄ω̃+

cos
(

2µ
h̄ω̃+

πn
)

sin
(
ω̃−
ω̃+
πn

)
sinh

(
2π2n
h̄ω̃+

)



≡ 〈Ñe〉L + 〈Ñe〉01 + 〈Ñe〉02 + 〈Ñe〉−osc + 〈Ñe 〉+
osc (98)

and the magnetic moment can be written as follows:

Mθ = M̃L + M̃01 + M̃02 + M̃−
osc + M̃+

osc (99)

where

M̃L = − eµ

3mcω2
0

(
ωc +

(
mω2

cθ/4
) − mω2

0θ

2 + mωcθ

)[
1

2
−

(
ωc +

(
mω2

cθ/4
) − mω2

0θ
)
mθ

(2 + mωcθ)2

]
(100)

M̃01 = − 4eµ

3mc

mθ

(2 + mωcθ)3

[(
µ

h̄ω0

)2

+

(
π

βh̄ω0

)2
]

and for M̃02, we have

M̃02 = h̄e

4mc

∞∑
n=1

(−1)n
e−βµn

sinh (nβh̄ω̃+) sinh (nβh̄ω̃−)

×
[

1

ω̃

(
ωc +

mθ

4
(2ω2

c + ω2) + 2ωc(mωθ/4)2

)

× (coth (nβh̄ω̃+) + coth (nβh̄ω̃−)) +
1

2
(2 + mωcθ)

×(coth (nβh̄ω̃+) − coth (nβh̄ω̃−))
]

(101)

and, for the irrational case ω+/ω− �∈ Q,

M̃−
osc = eπ

βmc

∞∑
n=1

(−1)n

sin
(
πn ω̃+

ω̃−

)
sinh

(
2π2n
βh̄ω̃−

) [
1

ω̃

(
ωc +

mθ

4

(
2ω2

c + ω2) + 2ωc(mωθ/4)2

)

×
(

µ

h̄ω̃2−
cos

(
2πn

µ

h̄ω̃−

)
− ω̃c

ω̃2−
cot

(
πn

ω̃+

ω̃−

)
sin

(
2πn

µ

h̄ω̃−

)

− π

βh̄ω̃2−
sin

(
πn

ω̃+

ω̃−

)
coth

(
2π2n

βh̄ω̃−

))
+

1

2
(2 + mωcθ)

×
(

− µ

h̄ω̃2−
cos

(
2πn

µ

h̄ω̃−

)
+

ω̃

ω̃2−
cot

(
πn

ω̃+

ω̃−

)
sin

(
2πn

µ

h̄ω̃−

)

+
π

βh̄ω̃2−
sin

(
πn

ω̃+

ω̃−

)
coth

(
2π2n

βh̄ω̃−

))]
(102)
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and the same result can be obtained for M̃+
osc

M̃+
osc = eπ

βmc

∞∑
n=1

(−1)n

sin
(
πn ω̃+

ω̃−

)
sinh

(
2π2n
βh̄ω̃−

) [
1

ω̃

(
ωc +

mθ

4

(
2ω2

c + ω2)

+ 2ωc(mωθ/4)2
) ( µ

h̄ω̃2−
cos

(
2πn

µ

h̄ω̃+

)
− ω̃c

ω̃2
+

cot

(
πn

ω̃−
ω̃+

)

× sin

(
2πn

µ

h̄ω̃+

)
− π

βh̄ω̃2
+

sin

(
πn

ω̃−
ω̃+

)
coth

(
2π2n

βh̄ω̃+

))
+

1

2
(2 + mωcθ)

×
(

− µ

h̄ω̃2
+

cos

(
2πn

µ

h̄ω̃+

)
+

ω̃

ω̃2
+

cot

(
πn

ω̃−
ω̃+

)
sin

(
2πn

µ

h̄ω̃+

)

+
π

βh̄ω̃2
+

sin

(
πn

ω̃−
ω̃+

)
coth

(
2π2n

βh̄ω̃+

))]
. (103)

Similar formulas can be derived for M±
osc in the rational case. These expression can be

studied in different limits of temperature, magnetic field and noncommutative parameter in
order to understand the behaviour of the system under consideration. This will be the subject
of the forthcoming paper [14].

5.4. Critical point mωcθ = −2

Let us mention that this critical point is actually equivalent to eBθ
c

= −2. By using the
transformation (11) and taking (c = 1, e = 1, m = 1), we find the critical point Bθ = 1
obtained in [19].

By taking mωcθ = −2, the set of frequencies defined in section 3.1 becomes

ω̃ = − ω2

2ωc

ω̃c = ωc

2

(
1 +

4ω2
0

ω2
c

)
ω̃+ = 0 ω̃− = 2ω̃. (104)

Now if we come back to equation (21), we get a Hamiltonian of a harmonic oscillator of
frequency ω̃, such that

Hθ

(
θ = − 2

mωc

)
= h̄ω̃

2
(2Ñg + 1) (105)

where the eigenstates and the eigenvalues are |ñg〉 and h̄ω̃
2 (2ñg + 1), respectively. Therefore,

the thermodynamical potential equation (44) can now be written in terms of Hθ

(
θ = − 2

mωc

)
9θ

(
θ = − 2

mωc

)
= − 1

β
T r e−β(Hθ (θ=−2/mωc)−µ) (106)

where the corresponding partition function is

Zθ

(
θ = − 2

mωc

)
= Tr e−β(Hθ (θ=−2/mωc)−µ) (107)

and the trace is taken on the eigenstates |ñg〉. Actually, we can construct coherent states in
such a way that

|z̃g〉 = exp

[
−1

2
|z̃g|2

]
ez̃g ã

†
g |0̃〉

(108)
ãg|z̃g〉 = z̃g|z̃g〉.
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With respect to the last equation, Zθ

(
θ = − 2

mωc

)
can be expressed as follows:

Zθ

(
θ = − 2

mωc

)
= eβµ

∫
d2z̃g〈z̃g|e−β h̄ω̃

2 (2Ñg+1)|z̃g〉. (109)

To calculate the partition function, one can consider the boson-operator identity [25]

eξa
†a =

∞∑
n=0

(eξ − 1)n

n!
a†a (110)

which holds for any operators a† and a satisfying the commutation relation [a, a†] = 1. By
applying this identity, we can show that

Zθ

(
θ = − 2

mωc

)
= e−β( h̄ω̃2 −µ)

∫
d2z̃g e−|z̃g |2(1−e−βh̄ω̃). (111)

After integration, we obtain

Zθ

(
θ = − 2

mωc

)
= eβµ

4 sinh
(
βh̄ω̃

2

) . (112)

Thus, the thermodynamical potential becomes

9θ

(
θ = − 2

mωc

)
= − 1

β
log

(
4 sinh

(
βh̄ω̃

2

))
− µ. (113)

We get for the magnetic moment

Mθ

(
θ = − 2

mωc

)
= − eh̄

4mc

ω2

ω2
c

coth

(
βh̄ω2

4ωc

)
(114)

and hence the susceptibility is

χθ

(
θ = − 2

mωc

)
= 1

2

(
eh̄

2mc

)2 [ 1

h̄ωc

(
ω2

ω2
c

− 1

)
coth

(
βh̄ω2

4ωc

)

+
β

2

ω4

ω4
c

(
1 + coth2

(
βh̄ω2

4ωc

))]
. (115)

From the last equation, we observe that susceptibility becomes infinite at zero magnetic field.
Note that there are some physical systems where infinite susceptibility is actually seen [26].

6. Conclusion

We have investigated the Fock–Darwin Hamiltonian on the noncommutative space. We started
by giving a noncommutative version of this Hamiltonian. Subsequently, the eigenstates and
the corresponding eigenvalues has been derived through two methods, an algebraic and an
analytical. The degeneracy of Landau levels has been considered and some algebras: su(2) and
su(1,1) have been realized. In particular it has been shown that the degeneracy of Landau levels
can be lifted for this model at weak magnetic field limit. Using the Berezin–Lieb inqualities,
we have obtained the magnetic behaviour of this model at high temperature, which is absent
in the commutative case. For low temperature, a θ -dependent correction to susceptibility
has been pointed out. Furthermore, through the use of the Fermi–Dirac trace formulas, a
generalization of the thermodynamical potential, the average number of electrons and the
magnetic moment have been found in terms of the noncommutative parameter. At critical
point, by using another approach, the magnetic moment and susceptibility have been obtained.
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Finally, we mention that this generalization can be studied in various regimes of
temperature, magnetic field and noncommutative parameter. We could also think to investigate
the relationship between the spatial distribution of current and the magnetic moment of the
whole system at the noncommutative level. Another possibility is to study the results derived
in this paper numerically. We hope to return to these questions in a subsequent publication.
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[11] Dayi Ö F and Jellal A 2001 Landau diamagnetism in noncommutative space and the nonextensive
thermodynamics of Tsallis Phys. Lett. A 287 349
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